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Differential Equation for the Transfer Matrix

I. A. Shelykh1,2,3 and V. K. Ivanov1

An electron propagating through a crystal toward an interface can either reflect or
transmit. The determination of its transmission and reflection probabilities represents
an actual task in such fields as nanoelectronics, magnetoelectronics, or spin electronics.
Within the framework of the effective mass approximation the problem can be reduced
to the tunneling of the quantum particle through one-dimensional potential barrier. The
tunneling process can be described by means of the transfer matrix, which contains
all the information about the energetic dependence of the transmission and reflection
coefficients. In the present work the differential equation for the transfer matrix of the
arbitrary potential barrier is derived. The method proposed represents an alternative way
of the calculation of the transfer matrix.
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1. INTRODUCTION

Since the appearance of the pioneering work of Esaki and Tsu (Tsu and Esaki,
1973), the carrier tunneling in semiconductor superlattices has been the focus
of a number of theoretical and experimental works in the field of mesoscopic
physics. As was shown (Esaki and Chang, 1976; Tsu and Esaki, 1973; Vessel
et al., 1984), the quantum interference of the ballistic carriers in such structures
leads to the resonant current–voltage characteristics (CVC) and to the formation
of regions with negative differential conductivity. This is due to the oscillating
dependence of the transmission coefficient of the multibarrier structures on the
carrier energy. The standard method of calculation for the energy dependence of
the transmission coefficient is based on the transfer matrix method proposed in (Tsu
and Esaki, 1973). This method was used while considering the optical properties
of quantum microcavities and photonic crystals (A´ndreani, 1994; Ivchenko and
Pikus, 1997; Kosobukin, 1993; Savonaet al., 1999), the ballistic transport in
modulated quantum wires (Bagraevet al., 2000; Kimet al., 1999; Kim and Satanin,
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1999) and wires in inhomogeneous magnetic field (Kousuke Yakubo, 2001), and
for determining of the miniband structure and interface states of infinite or semi
infinite superlattices (Trzeciakowski, 1988; Vladimirova and Kavokin, 1995). The
transfer matrix method allows the determination of the positions of the transmission
resonances through multibarrier structures for arbitrary values of the system’s
characteristic parameters.

The present work is devoted to the derivation of the integral and differential
equations that describe the transfer matrix of an arbitrary potential barrier.

2. DEFINITION OF THE TRANSFER MATRIX

Let us consider a potential barrier, localized in the region [xmin; xmax] and
having some arbitrary shape. Outside this region let us put the potential constant.

U =


U0, x < xmin

U (x), xmin < x < xmin

U1, x > xmax

If the energy of a particleε exceeds the potentialsU0 andU1, its wave function
can be represented in the regions outside the barrier as a linear combination of two
plane waves. Within the barrier region it can be determined from the Schrodinger
equation [

− h2

2m

d2

dx2
+U (x)

]
9(x) = ε9(x) (1)

wherem is the effective mass of the particle assumed to be independent on the co-
ordinate. Let us suppose that91(x) and92(x) are two linear independent solutions
of this equation. The wave function in the overall space can thus be represented as

9 =


A0eikox + B0e−ikox, x < xmin

C91(x)+ D92(x), xmin < x < xmax

A1eik1x + B1e−ik1x, x > xmax

wherehk0 =
√

2m(E −U0), hk1 =
√

2m(E −U1). The coefficientsA0, B0, A1,
B1 describe the amplitudes of the plane waves in the right and left regions. They
are connected by the transfer matrixT (Tsu and Esaki, 1973), so that

X1 = TX0 (2)

X1 =
(

A1

B1

)
, X0 =

(
A0

B0

)
, T =

(
t11 t12

t21 t22

)
(2a)
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which can be determined as (Liu and Stamp, 1993):

T =
(
τ ∗1 ei (k0−k1)L τ ∗2 e−i (k0+k1)L

τ2ei (k0+k1)L τ1ei (k1−k0)L

)

τ1 = eik1L (9 ′1− ik191)+ ik0e−ik1L (9 ′2− ik192),

τ2 = eik1L (9 ′1− ik191)− ik0e−ik1L (9 ′2− ik192)

whereL = xmax− xmin, 91(x) and92(x) represent two solutions of the Cauchy
problem for the Eq. (1) with the following initial conditions

91(xmin) = 1; 9 ′1(xmin) = 0

92(xmin) = 0; 9 ′2(xmin) = 1

The amplitudes of the transmissionA and reflectionB can be determined from the
following set of the algebraic equations(

A
0

)
= T

(
B
1

)
Thus, the transmission and reflection coefficients are

R= |B|2 =
∣∣∣∣τ2

τ1

∣∣∣∣2 (3)

T = k1

K0
|A|2 = k1

k0|τ1|2 (3a)

and all the characteristics of the transport are determined by the elements of the
transfer matrix.

3. DERIVATION OF THE DIFFERENTIAL EQUATION
FOR THE TRANSFER MATRIX

Now, let us obtain the differential equation for the transfer matrix of the
arbitrary smooth potential barrier. For this purpose, let us consider the scattering
potentialU (x), whereU (x) is a finite smooth function in [−∞,+∞]. We can
approximate the real shape of the barrier by a sequence of the rectangular layers. By
increasing the number of layers, one increases the precision of the approximation.
Let us assume that the particle energy always exceeds the barrier height. Then, in
the j th layer the particle’s wavefunction can be represented as

ψ j = Aj e
ik j x + Bj e

−ik j x
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wherekj = 1
h

√
2m[E −U (xj )]. Using the boundary conditions, it is easy to es-

tablish the connection betweenAj+1, Bj+1 andAj , Bj . One has

Aj e
ik j x j + Bj e

−ik j x j = Aj+1eik j+1xj + Bj+1e−ik j+1xj

k j
(
Aj e

ik j x j − Bj e
−ik j x j

) = kj+1
(
Aj+1eik j+1xj − Bj+1e−ik j+1xj

)
Introducing the vectorsX j = ( Aj

Bj
), X j+1 = ( Aj+1

Bj+1
), it is easy to show that

X j+1 = D j X j

where

Dj = C(kj+1, xj )D(kj , kj+1)C−1(kj , xj )

C(k1, xm) =
(

eiki xm 0
0 e−iki xm

)

D(kj , kj+1) =


kj+1+ kj

2kj+1

kj+1− kj

2kj+1

kj+1− kj

2kj+1

kj+1+ kj

2kj+1


The transfer matrix through the whole barrier is a product of the transfer

matrices of then layers

T =
n∏

j=0

D j = C(kt , xmax)

{
n∏

j=0

D(kj , kj+1)C−1(kj , xj − xj−1)

}
C−1(k f , xmin)

(4)

wherek f is a wave number of the incident particle,kt - of the transmitted particle.
The factorsC(xt , xmax) andC−1(k f , xmin) change only the phase of the matrix
elements ofT, and according to (3) do not change the transmission and reflection
coefficients. Thus, in the following discussion we will use the matrix

T ′ =
n∏

j=1

D(kj , kj+1)C−1(kj , xj − xj−1)

which is equivalent to the matrixT.
Now let us increase the number of the layers to put the thickness of the each

layerdx infinitely small,dx→ 0. The matricesD andC can now be considered
to depend on the continuous coordinatex. Using the Taylor expansion for the
elements of the matricesD andC and leaving only the term linear indx, it is easy
to show

D(x)C−1(x) = I + V(x) dx (5)
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whereI is a unity matrix,

V(x) =

−
1

2k(x)

∂k

∂x
− ik(x)

1

2k(x)

∂k

∂x
1

2k(x)

∂k

∂x
− 1

2k(x)

∂k

∂x
+ ik(x)



k(x) =
√

2m[E −U (x)]

h
(6)

Let us consider the total transfer matrix, which can be calculated as a product
of all the matrices (15) fromx = xmin to x = xmax.

T′ =
∏

j

(I + V(xj )) = I +
∑

j

V(xj )+
∑
j<l

V(xj )V(xl )+ · · ·

+
∑

j<l< ...s

V(xj )V(xl ) · · ·V(xs)+ · · · = I +
∫ xmax

xmin

dx1V(x1)

+
∫ xmax

xmin

dx1

∫ x1

xmin

dx2V(x1)V(x2)+ · · · +
∫ xmax

xmin

dx1

∫ x1

xmin

dx2 · · ·

×
∫ xn−1

xmin

dxnV(x1)V(x2) · · ·V(xn)+ · · · = I +
∞∑

n=1

T(n) (7)

where

T(n) =
∫ xmax

xmin

dx1

∫ x1

xmin

dx2 · · ·
∫ xn−1

xmin

dxnV(x1)V(x2) · · ·V(xn)

The formula (7) gives a representation of the transfer matrix in the form of a
series of integrals. Let us introduce a coordinate-dependent matrix

T(x) =
∏
xj <x

D(xj )

UsingT(x) the transfer matrixT ′ can be determined asT = T(xmax). It is easy to
show, thatT(x) obeys the following differential equation

T(xmin) = I (8)

∂T
∂x
= V(x)T (8a)

In fact, transforming this equation into the integral one

T(x) = I +
∫ x

xmin

V(x′)T(x′) dx′ (9)

and iterating (9), one easily obtains the series (7).
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In conclusion, we have demonstrated that the transfer matrix satisfies the
differential equation equivalent to the integral equation. It can be found directly
without solving the Schrodinger equation for any smooth potential barrier. The
method proposed represents an alternative way of the calculation of the transfer
matrix.
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